
Cocoa UI Views for Audio Units

Developers can now build visual interfaces for their audio units using Cocoa. This
document describes the process of building a Cocoa UI for an Audio Unit.

Architecture

The Cocoa developer would continue to write the Audio Unit in C/C++ and then
develop the user interface in Cocoa as a Cocoa bundle. The bundle classes are
required to adopt a protocol that enforces an API that is a contract between the
host application and the user interface view. This protocol allows the host to
instantiate the UI and get information about its size and the Audio Unit it
represents.

The Cocoa bundle includes all view classes and resources required to display the
user interface. A single bundle may contain a single view for a single Audio Unit,
multiple views for a single audio unit, a single view for multiple Audio Units, or
multiple views for multiple Audio Units.

Each audio unit that supports a Cocoa UI view must support the following
property: kAudioUnitProperty_CocoaUI

The value of this property is the following struct:

typedef struct AudioUnitCocoaViewInfo {
 CFURLRef mCocoaAUViewBundleLocation;
 CFStringRef mCocoaAUViewClass[1];
};

mCocoaAUViewBundleLocation - contains the location of the bundle which
the host app can then use to locate the bundle
mCocoaAUViewClass - contains the names of the classes that implements the
required protocol for an AUView

The AU can return an array of these view info structures (similar to the CarbonUI
view component id's).

The host can determine how many view classes are returned in this property be
interrogating the size of the property value (which is returned in the
AudioUnitGetProperty call that is used to return this property value). Typically, an
AU will return only one class (as most AUs only provide a single view
component)

CocoaAUView Protocol

As previously mentioned, each UI class in the bundle must adopt a specific
protocol. This protocol (in AudioUnit/AUCocoaUIView.h) specifies a method
uiViewForAudioUnit:withSize: that will return an NSView object for the user
interface. In Cocoa, this method looks something like this:

#import <Cocoa/Cocoa.h>
#include <AudioUnit/AudioUnit.h>

@protocol AUCocoaUIBase

// Returns the version of the interface you are implementing
// You should return 0 for now.
- (unsigned) interfaceVersion;

// Returns the NSView responsible for displaying the interface
- (NSView *) uiViewForAudioUnit: (AudioUnit) au

 withSize : (NSSize) inPreferredSize;

@end

The bundle class must implement this method and return a valid NSView. The
host will pass two parameters- the AudioUnit to be used for display and a hint to
the size of the requested view. Your view should attempt to return a view sized
as closely as possible to the requested size. If you return a larger sized view than
the host is expecting, it is the responsibility of the host to place the view in a
scroll pane.

Each call to uiViewForAudioUnit:withSize: is expected to return a unique view.
That is to say that the class implementing the AUCocoaUIBase protocol should
function as a view factory. Each returned view should have a retain count of 1,
and be returned autoreleased. It is the host’s responsibility to retain the view as
necessary. See the SampleEffectUnit’s Cocoa UI in the SDK for an example.

Optionally, the view factory class may override the description method from
NSObject to return the name of the view. It is imperative that this string is
returned as a copy since a static string could be destroyed once the view factory
instance is deallocated.

- (NSString *)description {

 return [NSString stringWithString: @"My view name"];
 }

Adding a Custom Cocoa UI to an Audio Unit
Adding a custom UI to an existing audio unit consists of two parts: creating the
Cocoa UI bundle, and modifying the audio unit code to support the
kAudioUnitProperty_CocoaUI property. The sample effect unit
(SampleEffect.pbproj in the SDK) has both a Carbon and a Cocoa UI view (the
Cocoa UI can be built by selecting the CocoaUI target of the project.) This
example serves as an excellent resource for making the changes that will be
discussed in the following sections.

Creating the Cocoa UI Bundle
Your Cocoa UI code must live in a Cocoa bundle. Although this bundle can live
anywhere, we recommend that you embed it directly the component for the audio
unit that it supports. Your bundle should have a .bundle extension and be created
with the Cocoa Bundle project template in Xcode.

Once you have created your bundle project, you should specify the target
settings. The most important settings are the Info.plist entries. Here, you should
specify the name of the executable and provide an identifier for your bundle.
These two steps are critical. We recommend that your identifier be something like
“com.your_company_name.your_audio_unit_name.cocoauibundle”.

For developers not using Xcode, the specific Info.plist keys you need to define

are the CFBundleExecutable key, and the CFBundleIdentifier key.

Once you have filled out this information, you may create your view factory class
file. The declaration should look something like this:

#import <Cocoa/Cocoa.h>
#import <AudioUnit/AUCocoaUIBase.h>

@interface CocoaUIFactory : NSObject <AUCocoaUIBase> { }

- (unsigned) interfaceVersion;
- (NSView *) uiViewForAudioUnit:(AudioUnit)au
 withSize:(NSSize) inPreferredSize;
@end

Your class is required to implement the AUCocoaUIBase protocol and its two
methods. Your class may load its UI from a nib file or create it programmatically.
Either approach works fine. Note that the only place your UI will be passed the
audio unit is in uiViewForAudioUnit:withSize: method. You will probably need to
cache this for later use.

Implementing the Cocoa View Property for your Audio Unit
To add support for the kAudioUnitProperty_CocoaUI property, you will need to
add handlers to both the GetPropertyInfo() and GetProperty() methods of your
audio unit. For the GetPropertyInfo() call, you will need to return the size of the
AudioUnitCocoaViewInfo structure that is used by the GetProperty() call.
Since the AudioUnitCocoaViewInfo structure is variable in size, you may
find it convenient to define your own version of the structure that better
represents the number of view classes your audio unit is capable of creating. For
example:

typedef struct MyAudioUnitCocoaViewInfo {
 CFURLRef mCocoaAUViewBundleLocation;
 CFStringRef mCocoaAUViewClass;
} MyAudioUnitCocoaViewInfo;

In the GetProperty() call your kAudioUnitProperty_CocoaUI property handler will
need to fill out the MyAudioUnitCocoaViewInfo struct. In order to do so, you will
need to know the location of your bundle and a string representing your view
factory class.

In most cases, your view code will live inside of the component bundle and you
can get the location by calling CFBundleGetBundleWithIdentifier() followed by
CFBundleCopyResourceURL(). If you use this methodology, it is extremely
important that the target settings for your audio unit specify the same exact

identifier as the string you specify in your code. It is also important that the
bundle executable name for your Cocoa UI bundle matches.

The class name is simply a string that is the same name as your view factory
class for the Cocoa UI.

Localization
Bundles should be designed with localization in mind. All strings and other
resources to be localized should be stored in the appropriate location:
Contents/Resources/English.lproj (for example).

Host Application Responsibilities
Cocoa Host apps would get the Audio Unit component and then query the
kAudioUnitProperty_CocoaUI property to see if the audio unit has a Cocoa
ui.
See the CocoaAUHost host app sample code in the SDK for a working example
of a Cocoa-based Audio Unit host application that loads and displays Cocoa UIs
from Audio Units.

Use the following method in NSBundle to get the view factory class for the string:
- (Class) classNamed: (NSString *) className

This class can then be instantiated using [Class alloc] init;.

Once the view factory class is instantiated, it is the host’s responsibility to
perform verification checks to make sure that the class conforms to the
AUCocoaUIBase protocol. If it does, the host can get the UI view by calling
uiViewForAudioUnit:withSize: as mentioned above.

The host is responsible for releasing the AudioUnitCocoaViewInfo struct and its
fields once it no longer needs them.

We recommend that a host application look first for UI components applicable for
the native framework of the application. IE, Cocoa hosts should give a priority to
Cocoa UI components and Carbon hosts should give priority to Carbon-based
user interfaces. If a native UI component is not found, the host should load a non-
native user interface component in a separate window.

There are examples available from developer.apple.com that demonstrate how to
do this:

CarbonInCocoa sample Code:
http://developer.apple.com/samplecode/Sample_Code/Cocoa/CarbonInCocoa.htm

Cocoa_With_Carbon_or_CPP sample Code:

http://developer.apple.com/samplecode/Sample_Code/Cocoa/Cocoa_With_Carbon_or_
CPP.htm

CarbonCocoaTempConverter Sample Code:
http://developer.apple.com/samplecode/Sample_Code/Cocoa/CarbonCocoaTempConve
rter.htm

Introduction to Carbon and Cocoa Integration Documentation:
http://developer.apple.com/documentation/Cocoa/Conceptual/CarbonCocoaDoc/cci_cha
p1/chapter_1_section_1.html

